Combining Machine Learning and Econometrics Application to Commercial Real Estate Prices

Marc Francke^{*} and Alex van de Minne^{**} Tokyo, January 2024 Seminar at Hitotsubashi University

* University of Amsterdam & Ortec Finance ** University of Connecticut

Motivation & Contribution

Motivation (1)

- Modeling CRE transaction prices. Different dimensions:
 - 1. Cross-section
 - 2. Spatial patterns
 - 3. Temporal dynamics
 - 4. Repeat transactions of the same property
- Item (1)
 - Functional form of property characteristics (size, type, construction year, ...) unknown, probably nonlinear and interaction effects
 - \rightarrow use ML algorithms
- Items (2)-(4)
 - · Violate i.i.d. assumption, implicitly assumed in standard ML approaches
 - The field of time-series, spatial, and panel data econometrics
 - \rightarrow Use econometric modeling

Motivation (2)

- Econometric models
 - · Requires a priori specification of Data Generating Process (DGP)
 - · transformations of variables and potential interaction effects, and
 - distributional assumptions on the error term.
 - Focus is on parameter estimates (causality)
 - · credible intervals
 - · Enables formal testing of hypothesis
- ML algorithms
 - No DGP specification is required
 - model's structure and parameter values simultaneously (Athey, 2018)
 - Focus on out-of-sample prediction
 - ML algorithms can easily outperform simple econometric models
 - · No testing possible
 - · Hungry for data, both in observations and features; the more, the better
- CRE: Small number of sales and features, and very heterogeneous A lot of unobserved heterogeneity → Property random effect

Contribution (1)

- Is it possible to combine the two cultures of statistical modeling? Yes
- Different components:
 - Econometric part
 - 1. Common trend: random walk
 - 2. Property type specific trends: random walk
 - 3. Spatial effects: Besag model (Besag and Kooperberg, 1995)
 - 4. Property effects: random effects
 - Machine Learning part
 - 5. Property characteristics
- · Some ML algorithms, like NN, are parametric models
 - · Can be estimated by likelihood based or Bayesian methods
 - Computationally not the most efficient method

Contribution (2)

- · However, most ML are non-parametric
- Iterative procedure works quite well
 - 1. Estimate the joint model with a linear function for the property characteristics component (5).
 - 2. Take the ML 'residual' as the observed value minus the estimates of components 1 to 4, and calibrate a ML algorithm
 - Take the DGP 'residual' as the observed value minus the prediction of component 5, and estimate the econometric model, consisting of components 1 to 4.
 - Repeat these steps until convergence occurs
- No guarantee of convergence to 'true' value, however
 - Check for neural network: full Bayesian and iterative approach
 - Simulate data with some nonlinear function and check whether iterative procedure finds the same components (not in paper, has been done for residential properties)

Contribution (3)

- Out-of-sample model performance
 - · Fully econometric model: worst performance
 - · ML algorithm only: second best
 - · Mixed model: best
- · Mixed model has components that are easy interpretable
 - · Location values: heat maps
 - · Constant quality price indexes
- · Iterative procedure works quite well, also in small samples
 - The differences in results between the full Bayesian estimation, and the iterative approach is negligible

Related literature

Related literature

- Econometric part
 - Structural time series part: replace time fixed effects by stochastic processes (among others, Francke and De Vos, 2000; Bollerslev, Patton, and Wang, 2016)
 - Spatial structure and random effects (Francke and Van de Minne, 2021).
- · A few examples of ML for real estate
 - · Kok, Koponen, and Martínez-Barbosa (2017): AVM for CRE
 - · Pace and Hayunga (2020): Analyze residuals from HPM & spatial models by ML
 - Deppner and Cajias (2022): HPM for RRE and spatial dependence
 - Deppner et al. (2023): AVM for CRE and feature importance
 - · Lorenz et al. (2023): Residential rents and interpretation of ML algorithms
- Interpretable ML
 - Mullainathan and Spiess (2017): ML algorithms lack explainability of predictions due to their complex structure that varies for each repeated calibration
 - Despite a substantial body of iML literature (Molnar, 2019), there is still a large gap with econometrics in terms of complexity and standardization of methods.

Model specifications

Neural Network

· Single-layer feed-forward network, NN

$$y_i = f^{NN}(x_i) + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma_\epsilon^2),$$
 (1a)

$$f^{NN}(x_i) = \lambda_0 + f(a_{1,i})\lambda_1 + \dots + f(a_{M,i})\lambda_M,$$
(1b)

$$a_{m,i} = \omega_{1,m} x_{i,1} + \dots + \omega_{K,m} x_{i,K} + \omega_{0,m}, \qquad (1c)$$

$$f(a_{m,i}) = (1 + \exp(-a_{m,i}))^{-1},$$
 (1d)

- Hidden node: $f(a_{m,i})$ with corresponding coefficients $\lambda_m, m = 1, \dots, M$
- Activation: $a_{m,i}$ linear function of indep. vars. with weights $\omega_{k,m}$, bias $\omega_{0,m}$
- Activation function, in our case a sigmoid
- Comments
 - Transform variables: Take log and demean
 - How many hidden nodes? We took $M = K \times 2 + 1$
 - · Multi-modality: use different starting values

Random Effects model

REM

$$y_{itp} = x'_{itp}\beta + \mu_t + \delta_{tp} + \theta_i + \phi_i + \epsilon_i, \quad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2),$$
(2a)

$$\mu_t \sim \mathcal{N}(\mu_{t-1}, \sigma_{\mu}^2), \quad u_{t=1} = 0,$$
(2b)

$$\delta_{t,p} \sim \mathcal{N}(\delta_{t-1,p}, \sigma_{\delta}^2), \quad \delta_{t=1,p} = 0,$$
(2c)

$$\Phi_{i}|\theta_{-i}, \sigma_{\theta}^{2} \sim \mathcal{N}\left(\frac{1}{m_{i}}\sum_{q\in\Omega_{i}}w_{iq}\theta_{q}, \frac{\sigma_{\theta}^{2}}{m_{i}}\right), \sum_{i=1}^{l}\theta_{i} = 0$$
 (2d)
 $\phi_{i} \sim \mathcal{N}(\mathbf{0}, \sigma_{\epsilon_{\phi}}^{2}).$ (2e)

- $x'_{itp}\beta$: linear specification for property characteristics
- μ : common trend; δ : property type trend, RW
- θ : spatial random effect: $w_{iq} = 1$ when distance ≤ 800 m, 0 otherwise
- ϕ : property random effect

θ

Combining NN and REM

- Full Bayesian approach: fNNREM
 - Replace $x'_{itp}\beta$ in Eq. (2a) by neural network $f^{NN}(x_{itp})$ in Eq. (1)
- Iterative approach: iNNREM
 - 0. Initialize: Estimate REM (Eq. 2) including linear term
 - 1. **Train** ML algorithm on $\{y_{itp} \hat{\mu}_t \hat{\delta}_{tp} \hat{\theta}_i \hat{\phi}_i, x_{itp}\}$, gives $\widehat{f(x_{itp})}$

- Compute $y_{itp}^* = y_{itp} - \overline{f(x_{itp})}$

- 2. Estimate: REM (Eq. 2) without linear term $x'_{itp}\beta$ with dependent variable y^*_{itp}
 - Repeat 1 and 2 until convergence in e.g. MAPE
- In the iterative approach NN can be replaced by any ML algorithm for supervised learning

Estimation

- Packages available in R / Python / Stan
 - NN: iterative backpropagation algorithm (Bishop and Nasrabadi, 2006)
 - REM: Integrated Nested Laplace Approximation (INLA) due to its computation speed (Rue, Martino, and Chopin, 2009).

Only applicable for Gaussian Markov Random Fields.

- fNNREM: No-U-Turn-Sampler (Hoffman and Gelman, 2014)
- · iNNREM: Combination of INLA and backpropagation algorithm
- Out-of-sample performance
 - 10 K-folding: train on 90% of data, and predict 10%
 - 10 times sampling without replacement
- Quality of the index
 - Take the average of index values
 - · Show the range: min to max

Data

Data

- Source: MSCI/RCA
- CRE in Phoenix: 2,652 pref-filtered transactions, period: 2001 2021
- NOI, property type (apartment / industrial / office / retail), age, latitude & longitude, unique property identifier, and walk score

Statistic	Mean	St. Dev.	Min	Max
Sales price	\$ 17,702,190	\$ 21,448,988	\$ 787,000	\$ 280,000,000
NOI (p. Sqft)	\$ 11.309	\$ 8.837	\$ 1.239	\$ 115.914
Building size (Sqft)	129,127	132,461	2,000	1,366,600
Age of building	19.627	13.572	1	78
Walk score	47.006	16.470	0	96
Property type count	Apartment	Industrial	Office	Retail
	1,174	263	484	731

- · Figure covers about 70% of transactions
- No clear center. Black square (representing highways) in the middle typically seen as CBD
- · Little transactions took place there
- Phoenix's CRE is "spread out" (growth and little supply constraints)

Results

- 1. Out-of-sample model fit
- 2. Heat map
- 3. Indexes

	(1)	(2)	(3)	(4)
	NN	REM	fNNREM	iNNREM
MAPE, out of sample, all	0.139	0.147	0.111	0.109
MAPE, out of sample, $k = 0$	0.142	0.157	0.111	0.114
MAPE, out of sample, $k = 1$	0.136	0.138	0.113	0.106
MAPE, out of sample, $k > 1$	0.133	0.117	0.102	0.090
MAPE, in sample, all	0.127	0.095	0.104	0.079
Obs, all			2,652	
Obs, $k = 0$			1,694	
Obs, k = 1			647	
Obs, k >1			311	

- MAPE for NN is lower than for REM
 - · except for properties that have at least 1 sale in training set
 - REM controls for unobserved heterogeneity
- In-sample MAPE is lower compared to the out-of-sample one for REM
 - Overfitting due to property random effects
- fNNREM and iNNREM perform similarly, and better than both NN and REM
 - · High correlation in predicted values & residuals
 - · Iterative: much faster and easier to generalize
- Less overfitting in fNNREM

Heat map

- Heat map of $\boldsymbol{\theta}$
- · Red is expensive
- Range is appprox. -10% to + 10%
- · Note that this conditional on NOI

Indexes

- NN does not provide indexes
- Left: REM; Right: iNNREM
- Indexes also available for Apartments and Retail
- Note that this conditional on NOI
- Model includes rents, so index related to cap rate
- REM: more co-movement between property types
- iNNREM: more uncertainty in index values

Robustness checks

Robustness check: Limited features (1)

- Limited features (without NOI and walk score)
 - REM are good at explaining away UH and are less affected by dropping variables having a spatial and/or time component.
 - These variables are difficult to get by in many other countries, asset types, or lower level geographies
- MAPE increase
 - NN: from 0.14 to 0.31
 - REM: from 0.15 to 0.23
 - iNNREM: from 0.11 to 0.15
- · Heat-map: range of spatial effect
 - Full set: -10% to +10%,
 - Limited set: -40% to +20%,

Contribution of the Individual Elements to the Total Fit of the iNNREM, for Both Full and Reduced Datasets.

		(1)	(2)
Description	Parameter	Full	Reduced
Common trend	$\hat{\mu}$	15.36%	14.94%
Property type subtrends	$\hat{\delta}$	2.92%	8.46%
Spatial random effect	$\hat{ heta}$	3.96%	11.55%
Property random effect	$\hat{\phi}$	0.07%	2.80%
Property characteristics	$\widehat{f(x_{itp})}$	77.69%	62.26%

Robustness checks: Including time and space in NN

- Adding dummy variables for locations and quarters: too many parameters
 - · Add linear trend and use coordinates

 $s^{x} = \cos(\text{Lat}) \times \cos(\text{Lon}), s^{y} = \cos(\text{Lat}) \times \sin(\text{Lon}), s^{z} = \sin(\text{Lat}).$

	(1) Full	(2) Reduced
MAPE, out of sample, all	0.121	0.250
MAPE, out of sample, $k = 0$	0.125	0.265
MAPE, out of sample, $k = 1$	0.116	0.239
MAPE, out of sample, $k > 1$	0.114	0.190
MAPE, in sample, all	0.095	0.214

- Fit improves, but not as good as iNNREM, specifically when a property got sold more than once
- · Not possible to provide indexes and heat maps

	(1) iSVM	(2) i RT	(3) iGBM
MAPE, out of sample, all	0.110	0.116	0.116
MAPE, out of sample, $k = 0$	0.114	0.122	0.120
MAPE, out of sample, $k = 1$	0.107	0.114	0.112
MAPE, out of sample, k >1	0.092	0.092	0.099
MAPE, in sample, all	0.085	0.085	0.082

Similar performance compared to iNNREM

Robustness checks: sampling subsets (1)

- · Select New York metro area: around 24,000 observations
- Sample without replacement 25% (6,250 obs), 10% (2,400 obs), 5% (1,200 obs), 2.5% (600 obs) and 1% (240 obs) from this data and re-estimate the subtrends.
- Proposed methodology produces reliable and stable indexes even in small sample environments (from 2.5%)
- Example for offices

Robustness checks: sampling subsets (2)

24

Conclusions

Conclusions

- · Main goal: illustrate that it is possible to combine econometrics and ML
- · Iterative approach works quite well
 - · Check with full Bayesian approach (400 times slower)
 - · Simulated data using nonlinear function for property characteristics
- Hybrid approach has the advantage (over ML only) of providing indexes and heat maps
- Adding random effects improves the out-of-sample prediction for properties having at least 1 sale in the training set
- Augmenting the baseline NN with spatio-temporal variables, does improve its fit, but it is not as good as the hybrid approach
- Room for improvement
 - · All components can be refined
 - · Ensemble of models

References

Athey, S. (2018). "The impact of machine learning on economics". In: *Economics of Artificial Intelligence*. University of Chicago Press.

Besag, J. and C. Kooperberg (1995). "On conditional and intrinsic autoregressions". In: *Biometrika* 82.4, pp. 733–746.

Bishop, C. M. and N. M. Nasrabadi (2006). Pattern recognition and machine learning. Springer.

- Bollerslev, T., A. J. Patton, and W. Wang (2016). "Daily house price indices: Construction, modeling, and longer-run predictions". In: *Journal of Applied Econometrics* 31.6, pp. 1005–1025.
- Deppner, J. and M. Cajias (2022). "Accounting for spatial autocorrelation in algorithm-driven hedonic models: A spatial cross-validation approach". In: *The Journal of Real Estate Finance and Economics*, pp. 1–39.
 Deppner, J., B. von Ahlefeldt-Dehn, E. Beracha, and W. Schaefers (2023). "Boosting the Accuracy of Commercial Real Estate Appraisals: An Interpretable Machine Learning Approach". In: *The Journal of Real Estate Finance and Economics*, pp. 1–38.

References ii

- Francke, M. K. and A. F. De Vos (2000). "Efficient Computation of Hierarchical Trends". In: *Journal of Business and Economic Statistics* 18, pp. 51–57.
- Francke, M. K. and A. M. Van de Minne (2021). "Modeling unobserved heterogeneity in hedonic price models". In: *Real Estate Economics* 49.4, pp. 1315–1339.
- Hoffman, M. D. and A. Gelman (2014). "The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.". In: *Journal of Machine Learning Research* 15.1, pp. 1593–1623.
- Kok, N., E. L. Koponen, and C. A. Martínez-Barbosa (2017). "Big Data in real estate? From manual appraisal to automated valuation". In: *The Journal of Portfolio Management* 43.6, pp. 202–211.
- Lorenz, F., J. Willwersch, M Cajias, and F. Fuerst (2023). "Interpretable machine learning for real estate market analysis". In: *Real Estate Economics* 51.5, pp. 1178–1208.
- Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Leanpub, https://christophm.github.io/interpretable-ml-book/.
- Mullainathan, S. and J. Spiess (2017). "Machine learning: An applied econometric approach". In: *Journal of Economic Perspectives* 31.2, pp. 87–106.
- Pace, R. K. and D. Hayunga (2020). "Examining the information content of residuals from hedonic and spatial models using trees and forests". In: *The Journal of Real Estate Finance and Economics* 60, pp. 170–180.

References iii

Rue, H., S. Martino, and N. Chopin (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 71.2, pp. 319–392.